
django-all-access Documentation
Release 0.9.0

Mark Lavin

Mar 06, 2017

Contents

1 Features 3

2 Installation 5

3 Documentation 7

4 License 9

5 Contributing 11

6 Contents 13
6.1 Getting Started . 13
6.2 Configuring Providers . 14
6.3 Customizing Redirects and Callbacks . 16
6.4 Additional API Calls . 20
6.5 Contributing Guide . 22
6.6 Release History . 24

7 Indices and tables 31

i

ii

django-all-access Documentation, Release 0.9.0

django-all-access is a reusable application for user registration and authentication from OAuth 1.0 and OAuth 2.0
providers such as Twitter and Facebook.

The goal of this project is to make it easy to create your own workflows for authenticating with these remote APIs.
django-all-access will provide the simple views with sane defaults along with hooks to override the default behavior.
You can find a basic demo application running at http://django-all-access.mlavin.org/

Contents 1

http://django-all-access.mlavin.org/

django-all-access Documentation, Release 0.9.0

2 Contents

CHAPTER 1

Features

• Sane and secure defaults for OAuth authentication

• Easy customization through class-based views

• Built on the amazing requests library

3

http://docs.python-requests.org/

django-all-access Documentation, Release 0.9.0

4 Chapter 1. Features

CHAPTER 2

Installation

It is easiest to install django-all-access from PyPi using pip:

pip install django-all-access

django-all-access requires Python 2.7 or 3.3+ along with the following Python packages:

django>=1.8
pycrypto>=2.4
requests>=2.0
requests_oauthlib>=0.4.2
oauthlib>=0.6.2

5

django-all-access Documentation, Release 0.9.0

6 Chapter 2. Installation

CHAPTER 3

Documentation

Additional documentation on using django-all-access is available on Read The Docs.

7

http://readthedocs.org/docs/django-all-access/

django-all-access Documentation, Release 0.9.0

8 Chapter 3. Documentation

CHAPTER 4

License

django-all-access is released under the BSD License. See the LICENSE file for more details.

9

https://github.com/mlavin/django-all-access/blob/master/LICENSE

django-all-access Documentation, Release 0.9.0

10 Chapter 4. License

CHAPTER 5

Contributing

If you have questions about using django-all-access or want to follow updates about the project you can join the
mailing list through Google Groups.

If you think you’ve found a bug or are interested in contributing to this project check out django-all-access on Github.

11

http://groups.google.com/group/django-all-access
https://github.com/mlavin/django-all-access

django-all-access Documentation, Release 0.9.0

12 Chapter 5. Contributing

CHAPTER 6

Contents

Getting Started

Below are the basic steps need to get django-all-access integrated into your Django project.

Configure Settings

You need to add allaccess to your installed apps as well as include an additional authentication backend in
your project settings. django-all-access requires django.contrib.auth, django.contrib.sessions and
django.contrib.messages which are enabled in Django by default. django.contrib.admin is recom-
mended for managing the set of providers, but is not required.

INSTALLED_APPS = (
Required contrib apps
'django.contrib.auth',
'django.contrib.sessions',
'django.contrib.messages',
Optional
'django.contrib.admin',
Other installed apps would go here
'allaccess',

)

AUTHENTICATION_BACKENDS = (
Default backend
'django.contrib.auth.backends.ModelBackend',
Additional backend
'allaccess.backends.AuthorizedServiceBackend',

)

Note that AUTHENTICATION_BACKENDS is not included in the default settings created by startproject. If you
want to continue to use the default username/password based authentication, you should be sure to include django.
contrib.auth.backends.ModelBackend in this setting.

13

django-all-access Documentation, Release 0.9.0

By default, django-all-access uses the built-in Django settings LOGIN_URL and LOGIN_REDIRECT_URL. You
should be sure that these are set to valid URLs for your site.

Configure Urls

To use the default redirect and callback views, you should include them in your root URL configuration.

from django.conf.urls import include

urlpatterns = [
Other URL patterns would go here
url(r'^accounts/', include('allaccess.urls')),

]

This makes the login URL for a particular provider /accounts/login/<provider>/, such as /accounts/
login/twitter/ or /accounts/login/facebook/. Once the user has authenticated with the remote
provider, they will be sent back to /accounts/callback/<provider>/, such as /accounts/callback/
twitter/ or /accounts/callback/facebook/.

Create Database Tables

You’ll need to create the necessary database tables for storing OAuth providers and user associations with those
providers. This is done with the migrate management command built into Django:

python manage.py migrate allaccess

Next Steps

At this point your project is configured to use the default django-all-access authentication, but no providers have been
added. Continue reading to learn how to add providers for your project.

Configuring Providers

django-all-access configures and stores the set of OAuth providers in the database. To enable your users to authenticate
with a particular provider, you will need to add the OAuth API URLs as well as your application’s consumer key and
consumer secret. The process of registering your application with each provider will vary and you should refer to the
provider’s API documentation for more information.

Note: While the consumer key/secret pairs are stored in the database as opposed to putting them in the settings file,
they are encrypted using the AES specification. Since this is a symmetric-key encryption the key/secret pairs can
still be read if the encryption key is compromised. In this case django-all-access uses a key based on the standard
SECRET_KEY setting. You should take care to keep this setting secret as its name would imply.

Common Providers

To get you started, there is an initial fixture of commonly used providers. This includes the URLs needed for Facebook,
Twitter, Google, Microsoft Live, Github and Bitbucket. Once you’ve added allaccess to your INSTALLED_APP

14 Chapter 6. Contents

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

django-all-access Documentation, Release 0.9.0

and created the tables with migrate, you can load this fixture via:

python manage.py loaddata common_providers.json

This does not include the consumer id/key or secret which will still need to be added to the records. The below
examples will help you understand what these values mean and how they would be populated for additional providers
you might want to use.

OAuth 1.0 Providers

OAuth 1.0 Protocol is defined by RFC 5849. It is sometimes referred to as 3-Legged OAuth due to the number of
requests between the provider and consumer.

To enable an OAuth provider, you should add a Provider record with the necessary request_token_url,
authorization_url and access_token_url as defined by the protocol. The provider’s API documentation
should detail these for you. You will also need to define a profile_url which is the API endpoint for requesting
the currently authenticated user’s profile information. You will also need to register for a key/secret pair from the
provider.

This protocol is implemented by a number of providers. These providers include Twitter, Netflix, Yahoo, Linkedin,
Flickr, Bitbucket, and Dropbox. Additional providers can be found on the OAuth.net Wiki.

Twitter Example

Twitter is a popular social website which provides a REST API with OAuth 1.0 authentication. If you wanted to enable
Twitter authentication on your website using django-all-access, you would create the following Provider record:

name: twitter
request_token_url: https://api.twitter.com/oauth/request_token
authorization_url: https://api.twitter.com/oauth/authenticate
access_token_url: https://api.twitter.com/oauth/access_token
profile_url: https://api.twitter.com/1.1/account/verify_credentials.json

After adding your consumer key and secret to this record you should now be able to authenticate with Twitter by
visiting /accounts/login/twitter/. You can find more information on the Twitter API on their developer
site.

OAuth 2.0 Providers

Unlike OAuth 1.0, OAuth 2.0 is only a working draft and not an official standard. In many ways it is much simpler
than its predecessor. It is often referred to as 2-Legged OAuth because it removes the need for the request token step.

To enable an OAuth provider, you should add a Provider record with the necessary authorization_url and
access_token_url as defined by the protocol. The provider’s API documentation should detail these for you.
You will also need to define a profile_url which is the API endpoint for requesting the currently authenticated
user’s profile information. You will also need to register for a key/secret pair from the provider.

Providers which implement the OAuth 2.0 protocol include Facebook, Google, FourSquare, Meetup, Github, and
Yammer.

Facebook Example

Facebook is a large social network which provides a REST API with OAuth 2.0 authentication. The below Provider
record will enable Facebook authentication:

6.2. Configuring Providers 15

http://tools.ietf.org/html/rfc5849
http://wiki.oauth.net/w/page/12238551/ServiceProviders
https://dev.twitter.com/docs
https://dev.twitter.com/docs
http://tools.ietf.org/html/draft-ietf-oauth-v2-28

django-all-access Documentation, Release 0.9.0

name: facebook
authorization_url: https://www.facebook.com/v2.8/dialog/oauth
access_token_url: https://graph.facebook.com/v2.8/oauth/access_token
profile_url: https://graph.facebook.com/v2.8/me

As you can see, the request_token_url is not included because it is not needed. After adding your consumer
key and secret to this record you should now be able to authenticate with Facebook by visiting /accounts/login/
facebook/. Facebook also has developer docs for additional information on using their API.

Note: Facebook began using the version number in the URL as part of their 2.0 API. Since then very little has changed
with regard to the OAuth flow but the version number is now required. The latest version of the API might not match
the documentation here. For the most up to date info on the Facebook API you should consult their API docs.

Customizing Redirects and Callbacks

django-all-access provides default views/urls for authentication. These are built from Django’s class based views
making them easy to extend or override the default behavior in your project.

OAuthRedirect View

The initial step for authenticating with any OAuth provider is redirecting the user to the provider’s website. The
OAuthRedirect view extends from the RedirectView By default it is mapped to the allaccess-login
URL name. This view takes one keyword argument from the URL pattern provider which corresponds to the
Provider.name for an enabled provider. If no enabled provider is found for the name, this view will return a 404.

class OAuthRedirect

client_class
Used to change the BaseOAuthClient used by the view. See OAuthRedirect.get_client()
for more details.

New in version 0.8.

params
Used to pass additional parameters to the authorization redirect (i.e. scope requests). See
OAuthRedirect.get_additional_parameters() for more details.

get_client(provider)
Here you can override the OAuth client class which is used to generate the redirect URL. Another use
case is to disable the enforcement of the OAuth 2.0 state parameter for providers which don’t support
it. If you are using the view for a single provider, it would be easiest to set the OAuthRedirect.
client_class attribute on the class instead.

You should be sure to use the same client class for the callback view as well.

get_redirect_url(**kwargs)
This method is originally defined by the RedirectView. The redirect URL is constructed from the
Provider.authorization_url along with the necessary parameters to match the OAuth speci-
fications. You should not need to override this method in your application.

get_additional_parameters(provider)
Here you can return additional parameters for the authorization request. By default this returns {}. A
common usage for overriding this method is to request additional permissions for the authorization. There

16 Chapter 6. Contents

http://developers.facebook.com/docs/
https://docs.djangoproject.com/en/1.8/topics/class-based-views/
https://docs.djangoproject.com/en/1.8/ref/class-based-views/#redirectview

django-all-access Documentation, Release 0.9.0

is no standard for additional permissions in the OAuth 1.0 specification. For an OAuth 2.0 provider this is
done with the scope parameter.

get_callback_url(provider)
This returns the URL which the remote provider should return the user after authentication. It is called by
OAuthRedirect.get_redirect_url() to construct the appropriate redirect URL. By default the
reverses the allaccess-callback URL name with the passed provider name.

You may want to override this method in your application if you wish to have a custom callback for a
given provider, a different callback for login vs registration, or a different callback for an authenticated
user associating a new provider with their account.

OAuthCallback View

After the user has authenticated with the remote provider or denied access to your application request, they are returned
to the callback specifed in the initial redirect. OAuthCallback defines the default behaviour on this callback.
This view extends from the base View class. By default it is mapped to the allaccess-callback URL name.
Similar to the OAuthRedirect view, this view takes one keyword argument provider which corresponds to the
Provider.name for an enabled provider. If no enabled provider is found for the name, this view will return a 404.

class OAuthCallback

client_class
Used to change the BaseOAuthClient used by the view. See OAuthCallback.get_client()
for more details.

New in version 0.8.

provider_id
Used to customize how the user identifier is found from the user profile response from the provider. If the
provider response includes a nested response then this value can include a dotted path to the id value.

For example if the response is {‘result’: {‘user’: {‘id’: ‘XXX’}}} then you can set this attribute to re-
sult.user.id to access the value. See OAuthCallback.get_user_id() for more details.

get_callback_url(provider)
This returns the callback URL specified in the initial redirect if it is different than the current request.
path. By default the callback URL will be the same and this view will return None. You will most likely
not need to change this in your project.

get_client(provider)
Here you can override the OAuth client class which is used to fetch the access token and user informa-
tion. Another use case is to disable the enforcement of the OAuth 2.0 state parameter for providers
which don’t support it. If you are using the view for a single provider, it would be easiest to set the
OAuthCallback.client_class attribute on the class instead.

You should be sure to use the same client class for the redirect view as well.

get_error_redirect(provider, reason)
Returns the URL to send the user in the case of an authentication failure. The reason is a brief text
description of the problem. By default this will return the user to the original login URL as defined by the
LOGIN_URL setting.

get_login_redirect(provider, user, access, new=False)
You can use this to customize the URL to send the user on a successful authentication. By default this
will be the LOGIN_REDIRECT_URL setting. The new parameter is there to indicate if this was a newly
created or a previously existing user.

6.3. Customizing Redirects and Callbacks 17

https://docs.djangoproject.com/en/1.8/ref/class-based-views/#view

django-all-access Documentation, Release 0.9.0

get_or_create_user(provider, access, info)
This method is used by OAuthCallback.handle_new_user() to construct a new user with a ran-
dom username, no email and an unusable password. You may want to override this user to complete more
of their infomation or attempt to match them to an existing user by either their username or email.

OAuthCallback.handle_new_user() will connect the user to the access record and does not
need to be handled here.

Note If you are using Django 1.5 support for a custom User model, you should override this
method to ensure the user is created correctly.

get_user_id(provider, info)
This method should return the unique identifier from the profile information. If the id cannot be deter-
mined, this should return None. The info parameter will be the parsed JSON response from the user’s
profile. If the response wasn’t JSON, it will be the plain text response. By default this looks for a key id
in the JSON dictionary. This will work for a number of providers, but will need to be changed to fit more
complex response structures.

You can customize how this lookup is done by setting the OAuthCallback.provider_id. This can
be done either in the class definition or when calling .as_view.

handle_existing_user(provider, user, access, info)
At this point the user has been authenticated via their access model with this provider, but they
have not been logged in. This method will login the user and redirect them to the URL returned by
OAuthCallback.get_login_redirect() with new=False.

The user’s profile info is passed to this method to allow for updating their data from their provider profile,
but this is not done by default.

handle_login_failure(provider, reason)
In the case of a failure to fetch the user’s access token or remote profile information or determine their id
from that info, this method will be called. It attachs a brief error message to the request via contrib.
messages and redirects the user to the result of the OAuthCallback.get_error_redirect()
method. You should override this function to add any additional logging or handling.

handle_new_user(provider, access, info)
If the user could not be matched to an existing AccountAccess record for this provider or that record
did not contain a user, this method will be called. At this point the access record has already been saved
but is not tied to a user. This will call OAuthCallback.get_or_create_user() to construct
a new user record. The user is then logged in and redirected to the result of the OAuthCallback.
get_login_redirect() call with new=True

You may want to override this user to complete more of their infomation or attempt to match them to an
existing user by either their username or email. You may want to override this to redirect them without
creating a new user in order to have them complete another registration form (i.e. pick a username or
provide an email if not returned by the provider).

Customization in URLs

For some minor customizations to the redirects and callbacks, it’s possible to handle that in the URL inclusion rather
than by creating a subclass of the view. The most common customizations are adding additional scope on the redirect
and changing how the provider identifier is found on the callback. Below is an example urls.py which handles both
of these cases.

from django.conf.urls import include, url

from allaccess.views import OAuthRedirect, OAuthCallback

18 Chapter 6. Contents

django-all-access Documentation, Release 0.9.0

urlpatterns = [
Customize Facebook redirect to request additional scope
url(r'^accounts/login/(?P<provider>facebook)/$',

OAuthRedirect.as_view(params={'scope': 'email'})),
Customize Foursqaure callback to handle nested response
url(r'^accounts/callback/(?P<provider>foursquare)/$',

OAuthCallback.as_view(provider_id='response.user.id')),
All other provider cases are handled by the defaults
url(r'^accounts/', include('allaccess.urls')),

]

Additional Scope Example

As noted above, the default OAuthRedirect redirect does not request any additional permissions from the provider.
It is recommended by most providers that you limit the number of additional permissions that you request. The user
will see the list of permissions you are requesting and if they see a long list of permissions they may decline the
authorization. The below example shows how you can request additional parameters for various providers.

from allaccess.views import OAuthRedirect

class AdditionalPermissionsRedirect(OAuthRedirect):

def get_additional_parameters(self, provider):
if provider.name == 'facebook':

Request permission to see user's email
return {'scope': 'email'}

if provider.name == 'google':
Request permission to see user's profile and email
perms = ['userinfo.email', 'userinfo.profile']
scope = ' '.join(['https://www.googleapis.com/auth/' + p for p in perms])
return {'scope': scope}

return super(AdditionalPermissionsRedirect, self).get_additional_
→˓parameters(provider)

This would be used instead of the default OAuthRedirect for the allaccess-login URL. Remember that this
logic can be based on the provider or even the current request. That would allow your project to A/B test requesting
more or less permissions to see its impact on user registrations.

Additional Accounts Example

You may want to allow a user to associate their account on your website with multiple providers. This example will
show a basic outline of how you can customize these views for that purpose.

First we will define a new callback which will associate the provider with the current user rather than creating a new
user. This view will also have to handle the case that another user is associated with the new provider. For this the
view will just return an error.

from allaccess.views import OAuthCallback

class AssociateCallback(OAuthCallback):

def get_or_create_user(self, provider, access, info):
return self.request.user

def handle_existing_user(self, provider, user, access, info):

6.3. Customizing Redirects and Callbacks 19

django-all-access Documentation, Release 0.9.0

if user != self.request.user:
return self.handle_login_failure(provider, "Another user is associated

→˓with this account")
User was already associated with this account
return super(AssociateCallback, self).handle_existing_user(provider, user,

→˓access, info)

This view will require authentication which is handled in the URL pattern. There are multiple methods for decorating
class based views which are detailed in the Django docs.

Next we will need a redirect view to send the user to this callback. This view will also require that the user already be
authenticated which can be handled in the URL pattern.

from django.core.urlresolvers import reverse
from allaccess.views import OAuthRedirect

class AssociateRedirect(OAuthRedirect):

def get_callback_url(self, provider):
return reverse('associate-callback', kwargs={'provider': provider.name})

This assumes that we named the pattern for the above callback associate-callback. An example set of URL
patterns is given below.

from django.contrib.auth.decorators import login_required

from .views import AssociateRedirect, AssociateCallback

urlpatterns = [
url(r'^associate/(?P<provider>(\w|-)+)/$', login_required(AssociateRedirect.as_

→˓view()), name='associate'),
url(r'^associate-callback/(?P<provider>(\w|-)+)/$', login_

→˓required(AssociateCallback.as_view()), name='associate-callback'),
]

That is the basic outline of how you would allow multiple account associations. This could be further customized
using the hooks described earlier.

Additional API Calls

django-all-access requests the user’s access token and fetches their profile information during the authentication pro-
cess. If you want to make additional API calls on behalf of the user, it is easy to do and you have the full power of the
python-requests library.

Getting the API

You can access the API client through the AccountAccess.api_client property. This will return ei-
ther a OAuthClient or OAuth2Client based on the provider. API requests can be made using either the
BaseOAuthClient.request() method. This takes the HTTP method as the first parameter and the URL as
the second. An example for the Twitter API is given below:

from allaccess.views import OAuthCallback

class NewTweetCallback(OAuthCallback):

20 Chapter 6. Contents

https://docs.djangoproject.com/en/1.8/topics/class-based-views/#decorating-class-based-views
http://docs.python-requests.org/

django-all-access Documentation, Release 0.9.0

def get_login_redirect(self, provider, user, access, new=False):
"Send a tweet for new Twitter users."
if new and provider.name == 'twitter':

api = access.api_client
url = 'https://api.twitter.com/1/statuses/update.json'
data = {'status': 'I just joined an awesome new site!'}
response = api.request('post', url, data=data)
Check for errors in the response?

return super(NewTweetCallback, self).get_login_redirect(provider, user,
→˓access, new)

This assumes that you have requested sufficient permissions to tweet on behalf of the user. While this example is done
in the callback, you can access the API client at any time by querying the AccountAccess table. There is a catch
in that the access token from the provider might have been revoked by the user or expired. You should refer to the
provider’s API documentation for information regarding available endpoints and the access token expiration.

The BaseOAuthClient.request() method is a thin wrapper around the underlying python-requests li-
brary which sets up the appropriate authenication for OAuth 1.0 or OAuth 2.0. For more information on additional
hooks available, you should refer to the python-requests documentation.

API Client

The OAuthClient or OAuth2Client classes define methods centered around OAuth specifications and the au-
thentication and registration workflow. The common methods are defined in a BaseOAuthClient. If you are going
to extend the client for a particular provider, it is recommended that you extend the appropriate OAuth 1.0 or 2.0 client
rather than the BaseOAuthClient.

class BaseOAuthClient

__init__(provider, token=’‘)
The client classes are created with an associated provider model record. The provider is used to provide
the necessary URL (request token, access token, profile URL) information to the client.

get_access_token(request, callback=None)
Used to fetch the access token from the callback URL. Unless you are familiar with the OAuth specifica-
tions, it is not recommended that you override this method.

get_profile_info(raw_token)
Fetches and parses the profile information from the provider’s profile URL. This assumes that the response
is JSON. If not, you may need to override this method.

get_redirect_args(request, callback)
Builds the necessary query string parameters for the initial redirect based on the OAuth specification. Ad-
ditional parameters are better added using OAuthRedirect.get_additional_parameters().
Unless you are familiar with the OAuth specifications, it is not recommended that you override this method.

get_redirect_url(request, callback)
Builds the appropriate OAuth callback URL based on the provider information and the result of
BaseOAuthClient.get_redirect_args(). Unless you are familiar with the OAuth specifica-
tions, it is not recommended that you override this method.

parse_raw_token(raw_token)
Parses the token (key, secret) information from the raw token response.

6.4. Additional API Calls 21

http://docs.python-requests.org/en/latest/api/#requests.request

django-all-access Documentation, Release 0.9.0

request(method, url, **kwargs)
A thin wrapper around python-requests, this also sets up the appropriate authentication head-
ers/parameters.

session_key
Returns a key for storing information in the user’s session. For OAuth 1.0 this would be used to store the
request token information. For OAuth 2.0 this is used for enforcing the state parameter.

Beyond the methods above, the OAuthClient also defines the below methods.

class OAuthClient

get_request_token(request, callback)
Retrieves the request token prior to the initial redirect to the provider. This is stored in the session using
the BaseOAuthClient.session_key which is unique per provider. Unless you are familiar with
the OAuth 1.0 specification, it is not recommended that you override this method.

OAuth2Client extends BaseOAuthClient to include these additional methods.

class OAuth2Client

check_application_state(request, callback)
On the callback this method is called to enforce the use of the state parameter. The use of state
is optional in the OAuth 2.0 spec but it is recommended and enforced by default by django-all-
access. If you do not want to enforce the use of state, you should override OAuth2Client.
get_application_state() and leave this method alone.

get_application_state(request, callback)
Prior to the redirect, this method is used to generate a random state parameter which is stored in the
session based on the BaseOAuthClient.session_key . By default it generates a secure random 32
character string. If you wish to make it longer you can override this method. If you do not want to enforce
the state parameter or the provider you are using does not allow it, you can override this to return None.

Contributing Guide

There are a number of ways to contribute to django-all-access. If you are interested in making django-all-access better
then this guide will help you find a way to contribute.

Ways to Contribute

Not all contributions are source code related. You can contribute to the project by writing a blog post on using django-
all-access and sharing with the mailing list. You can also submit bug reports, feature requests or documentation
updates through the Github issues.

Getting the Source

You can clone the repository from Github:

git clone git://github.com/mlavin/django-all-access.git

However this checkout will be read only. If you want to contribute code you should create a fork and clone your fork.
You can then add the main repository as a remote:

22 Chapter 6. Contents

http://groups.google.com/group/django-all-access
https://github.com/mlavin/django-all-access/issues

django-all-access Documentation, Release 0.9.0

git clone git@github.com:<your-username>/django-all-access.git
git remote add upstream git://github.com/mlavin/django-all-access.git
git fetch upstream

Running the Tests

When making changes to the code, either fixing bugs or adding features, you’ll want to run the tests to ensure that you
have not broken any of the existing functionality. With the code checked out and Django installed you can run the tests
via:

python setup.py test

or:

python runtests.py

Note that the tests require the mock library. To test against multiple versions of Django you can use install and use
tox>=1.4. The tox command will run the tests against the currently supported Python and Django versions.

Build all environments tox # Build a single environment tox -e py27-django18-normal

Building all environments will also build the documentation. More on that in the next section.

Building the Documentation

This project aims to have a minimal core with hooks for customization. That makes documentation an important
part of the project. Useful examples and notes on common use cases are a great way to contribute and improve the
documentation.

The docs are written in ReST and built using Sphinx. As noted above, you can use tox to build the documentation or
you can build them on their own via:

tox -e docs

or:

make html

from inside the docs/ directory.

Coding Standards

Code contributions should follow the PEP8 and Django contributing style standards. Please note that these are only
guidelines. Overall code consistency and readability are more important than strict adherence to these guides.

Submitting a Pull Request

The easiest way to contribute code or documentation changes is through a pull request. For information on submitting
a pull request you can read the Github help page https://help.github.com/articles/using-pull-requests.

Pull requests are a place for the code to be reviewed before it is merged. This review will go over the coding style as
well as if it solves the problem intended and fits in the scope of the project. It may be a long discussion or it might just
be a simple thank you.

6.5. Contributing Guide 23

http://www.voidspace.org.uk/python/mock/
http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/
http://www.python.org/dev/peps/pep-0008/
https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/
https://help.github.com/articles/using-pull-requests

django-all-access Documentation, Release 0.9.0

Not necessarily every request will be merged but you should not take it personally if your change is not accepted. If
you want to increase the chances of your change being incorporated, here are some tips.

• Address a known issue. Preference is given to a request that fixes a currently open issue.

• Include documentation and tests when appropriate. New features should be tested and documented. Bugfixes
should include tests which demonstrate the problem.

• Keep it simple. It’s difficult to review a large block of code, so try to keep the scope of the change small.

If you aren’t sure if a particular change is a good idea, or if it would be helpful to other users, just ask. You should
also feel free to ask for help writing tests or writing documentation if you aren’t sure how to go about it.

Release History

Release and change history for django-all-access

v0.9.0 (2016-11-12)

Encrypted fields for storing the provider configurations and access tokens now sign the values after encryption to
dectect if the key is valid before attempting to decrypt. This was added thanks to Florian Demmer (@fdemmer).

Other small changes include:

• Added Django 1.10 and Python 3.5 to the test suite coverage.

• Updated documentation on Facebook version numbers.

• Update provider fixtures to include the latest version number for Facebook.

v0.8.0 (2016-01-23)

Minor clean up release which drops support for outdated versions of Django. As such it also removes the old South
migrations and the commands related to django-social-auth.

• Added support for additional parameters in the redirect view.

• Added support for more complex id lookups in the callback view.

• Additional documentation examples for customizing the views.

• Added support for Django 1.9.

• Tracking code coverage reports with Codecov.io.

Backwards Incompatible Changes

• Python 3.2 is no longer officially supported or tested.

• Django < 1.8 is no longer officially supported or tested.

• requests_oauthlib < 0.4.2 is no longer officially supported.

• migrate_social_accounts and migrate_social_accounts commands have been removed.

24 Chapter 6. Contents

http://groups.google.com/group/django-all-access

django-all-access Documentation, Release 0.9.0

v0.7.2 (2015-05-13)

• Model updates for Django 1.8 compatibility. Requires a non-DB altering migration.

v0.7.1 (2015-04-19)

• Fixed issue in migrate_social_accounts where output was overly verbose.

• Fixed issue in migrate_social_accounts with handling skipped providers.

v0.7.0 (2014-09-07)

This release adds support for 1.7 and the new style migrations. If you are using Django < 1.7 and South >= 1.0 this
should continue to work without issue.

For those using Django < 1.7 and South < 1.0 you’ll need to add the SOUTH_MIGRATION_MODULES setting to point
to the old South migrations.

SOUTH_MIGRATION_MODULES = {
'allaccess': 'allaccess.south_migrations',

}

No new migrations were added for this release, but this will be the new location for future migrations. If your DB
tables are up to date from v0.6, upgrading to 1.7 and running:

python manage.py migrate allaccess

should automatically fake the initial migration using the new-style migrations.

Backwards Incompatible Changes

• Python 2.6 is no longer officially supported or tested.

v0.6.0 (2014-02-01)

This release adds a better migration path for moving from django-social-auth and includes changes to support running
on the Google App Engine. There are two South migrations included with this release. To upgrade, you should run:

python manage.py migrate allaccess

More details for this change are noted under the “Backwards Incompatible Changes”.

• Added migrate_social_accounts and migrate_social_providers management commands to
help migrate data from django-social-auth.

• Updated Provider model for compatibility with running on the Google App Engine. Thanks to Marco Seguri
for the report and fix.

• Increased the URL lengths for the fields on the Provider model. Thanks to Marco Seguri for the fix.

• Added support for serialization of Provider and AccountAccess records by natural keys.

• Included a fixture of common providers (Facebook, Twitter, Google, Microsoft Live, Github and Bitbucket).
Thanks to Marco Seguri for the initial patch.

6.6. Release History 25

django-all-access Documentation, Release 0.9.0

Backwards Incompatible Changes

• The key and secret columns on Provider were renamed to consumer_key and consumer_secret.
key is a reserved property

name when using Google App Engine and secret was changed as well for consistency. A migration has
been added for the change but if you were referencing the key/secret explicitly in your code those refer-
ences need to be updated as well. - ProviderManager.enabled has been removed. This was a short-cut
method for filtering out providers with key or secret values. However, it doesn’t work on Google App Engine.
It was only used in a few places internally so it was removed. The equivalent query is Provider.objects.
filter(consumer_secret__isnull=False, consumer_key__isnull=False)

v0.5.1 (2013-08-16)

• Fix incompatibility with the existing South migrations and a customized User model. Thanks to Jharrod LaFon
for the report and fix.

v0.5.0 (2013-03-18)

This release adds additional hooks for changing the OAuth client behaviors. It also adds support for Python 3.2+.

• New view hooks for customizing the OAuth client

• Fixed issue with including oauth_verifier in POST when fetching the access token

• Documented the API for OAuthClient and OAuth2Client

• Updated requirements to requests >= 1.0 and requests_oauthlib >= 0.3.0

• Updated requirement for PyCrypto >= 2.4

Backwards Incompatible Changes

• Dropped support for requests < 1.0

• Dropped support for Django < 1.4.2

v0.4.1 (2013-01-02)

There were incompatibilty issues with requests-oauthlib (0.2) and requests which required dropping requests 1.0 sup-
port. The requirement of oauthlib was also raised to 0.3.4 due to similar issues. For more detail see the below issues.

• https://github.com/requests/requests-oauthlib/issues/1

• https://github.com/requests/requests-oauthlib/pull/10

v0.4.0 (2012-12-19)

This release is largely to keep pace with features/changes to some of the dependencies. This also helps work toward
Python 3.0 support.

• Updated for compatibility with Django 1.4 timezone support

• Updated for compatibility with Django 1.5 swappable auth.User

• Updated for compatibility with Requests 1.0

26 Chapter 6. Contents

https://github.com/requests/requests-oauthlib/issues/1
https://github.com/requests/requests-oauthlib/pull/10

django-all-access Documentation, Release 0.9.0

– Added requests_oauthlib requirement

– Updated requirement of oauthlib to 0.3 or higher

v0.3.0 (2012-07-13)

This release added some basic logging to django-all-access. To enable this logging in your project, you should update
your LOGGING configuration to include allaccess in the loggers section. Below is an example:

LOGGING = {
'handlers': {

'console':{
'level':'DEBUG',
'class':'logging.StreamHandler',

},
'mail_admins': {

'level': 'ERROR',
'class': 'django.utils.log.AdminEmailHandler',
'filters': ['special']

}
},
'loggers': {

'django.request': {
'handlers': ['mail_admins',],
'level': 'ERROR',
'propagate': True,

},
'allaccess': {

'handlers': ['console',],
'level': 'INFO',

}
}

}

For more information on logging please see the Django documentation or the Python documentation.

Features

• Added access to simple API wrapper through the AccountAccess model

• Added state parameter for OAuth 2.0 by default

• Added basic error logging to OAuth clients and views

• Added contributing guide and mailing list info

v0.2.1 (2012-06-29)

Bug Fixes

• Fixes missing Content-Length header when requesting OAuth 2.0 access token

6.6. Release History 27

https://docs.djangoproject.com/en/1.4/topics/logging/
http://docs.python.org/library/logging.html

django-all-access Documentation, Release 0.9.0

v0.2.0 (2012-06-24)

There are two South migrations included with this release. To upgrade you should run:

python manage.py migrate allaccess

If you are not using South, you will not need to change your database schema because the underlying field type did
not change. However, you should re-save all existing AccountAccess instances to ensure that their access tokens
go through the encryption step

from allaccess.models import AccountAccess

for access in AccountAccess.objects.all():
access.save()

Features

• OAuthRedirect view can now specify a callback URL

• OAuthRedirect view can now specify additional permissions

• Context processor for adding enabled providers to the template context

• User access tokens are stored with AES encryption

• Documentation on customizing the view workflow behaviors

• Travis CI integration

Bug Fixes

• Fixed OAuth2Client to include grant_type paramater when requesting access token

• Fixed OAuth2Client to match current OAuth draft for access token response as well as legacy response from
Facebook

Backwards Incompatible Changes

• Moving the construction on the callback from the client to the view changed the signature of the
client get_redirect_url, get_redirect_args, get_request_token (OAuth 1.0 only) and
get_access_token to include the callback. These are largely internal functions and likely will not im-
pact existing applications.

• The AccountAccess.access_token field was changed from a plain text field to an encrypted field. See
previous note on migrating this data.

v0.1.1 (2012-06-22)

• Fixed bug with passing incorrect callback parameter for OAuth 1.0

• Additional documentation on configuring LOGIN_URL and LOGIN_REDIRECT_URL

• Additional view tests

• Handled poor LOGIN_URL and LOGIN_REDIRECT_URL settings in view tests

28 Chapter 6. Contents

django-all-access Documentation, Release 0.9.0

v0.1.0 (2012-06-21)

• Initial public release.

6.6. Release History 29

django-all-access Documentation, Release 0.9.0

30 Chapter 6. Contents

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

31

django-all-access Documentation, Release 0.9.0

32 Chapter 7. Indices and tables

Index

Symbols
__init__() (BaseOAuthClient method), 21

B
BaseOAuthClient (built-in class), 21

C
check_application_state() (OAuth2Client method), 22
client_class (OAuthCallback attribute), 17
client_class (OAuthRedirect attribute), 16

G
get_access_token() (BaseOAuthClient method), 21
get_additional_parameters() (OAuthRedirect method), 16
get_application_state() (OAuth2Client method), 22
get_callback_url() (OAuthCallback method), 17
get_callback_url() (OAuthRedirect method), 17
get_client() (OAuthCallback method), 17
get_client() (OAuthRedirect method), 16
get_error_redirect() (OAuthCallback method), 17
get_login_redirect() (OAuthCallback method), 17
get_or_create_user() (OAuthCallback method), 17
get_profile_info() (BaseOAuthClient method), 21
get_redirect_args() (BaseOAuthClient method), 21
get_redirect_url() (BaseOAuthClient method), 21
get_redirect_url() (OAuthRedirect method), 16
get_request_token() (OAuthClient method), 22
get_user_id() (OAuthCallback method), 18

H
handle_existing_user() (OAuthCallback method), 18
handle_login_failure() (OAuthCallback method), 18
handle_new_user() (OAuthCallback method), 18

O
OAuth2Client (built-in class), 22
OAuthCallback (built-in class), 17
OAuthClient (built-in class), 22
OAuthRedirect (built-in class), 16

P
params (OAuthRedirect attribute), 16
parse_raw_token() (BaseOAuthClient method), 21
provider_id (OAuthCallback attribute), 17

R
request() (BaseOAuthClient method), 21

S
session_key (BaseOAuthClient attribute), 22

33

	Features
	Installation
	Documentation
	License
	Contributing
	Contents
	Getting Started
	Configuring Providers
	Customizing Redirects and Callbacks
	Additional API Calls
	Contributing Guide
	Release History

	Indices and tables

