

django-all-access

django-all-access is a reusable application for user registration and authentication
from OAuth 1.0 and OAuth 2.0 providers such as Twitter and Facebook.

The goal of this project is to make it easy to create your own workflows for
authenticating with these remote APIs. django-all-access will provide the simple
views with sane defaults along with hooks to override the default behavior.

[image: https://travis-ci.org/mlavin/django-all-access.svg?branch=master]
 [https://travis-ci.org/mlavin/django-all-access][image: https://codecov.io/github/mlavin/django-all-access/coverage.svg?branch=master]
 [https://codecov.io/github/mlavin/django-all-access?branch=master]You can find a basic demo application running at http://django-all-access.mlavin.org/

Features

	Sane and secure defaults for OAuth authentication

	Easy customization through class-based views

	Built on the amazing requests [http://docs.python-requests.org/] library

Installation

It is easiest to install django-all-access from PyPi using pip:

pip install django-all-access

django-all-access requires Python 2.7 or 3.3+ along with the following Python
packages:

django>=1.8
pycrypto>=2.4
requests>=2.0
requests_oauthlib>=0.4.2
oauthlib>=0.6.2

Documentation

Additional documentation on using django-all-access is available on
Read The Docs [http://readthedocs.org/docs/django-all-access/].

License

django-all-access is released under the BSD License. See the
LICENSE [https://github.com/mlavin/django-all-access/blob/master/LICENSE] file for more details.

Contributing

If you have questions about using django-all-access or want to follow updates about
the project you can join the mailing list [http://groups.google.com/group/django-all-access]
through Google Groups.

If you think you’ve found a bug or are interested in contributing to this project
check out django-all-access on Github [https://github.com/mlavin/django-all-access].

Contents

	Getting Started
	Configure Settings

	Configure Urls

	Create Database Tables

	Next Steps

	Configuring Providers
	Common Providers

	OAuth 1.0 Providers

	Twitter Example

	OAuth 2.0 Providers

	Facebook Example

	Customizing Redirects and Callbacks
	OAuthRedirect View

	OAuthCallback View

	Customization in URLs

	Additional Scope Example

	Additional Accounts Example

	Additional API Calls
	Getting the API

	API Client

	Contributing Guide
	Ways to Contribute

	Getting the Source

	Running the Tests

	Building the Documentation

	Coding Standards

	Submitting a Pull Request

	Release History
	v0.9.0 (2016-11-12)

	v0.8.0 (2016-01-23)

	v0.7.2 (2015-05-13)

	v0.7.1 (2015-04-19)

	v0.7.0 (2014-09-07)

	v0.6.0 (2014-02-01)

	v0.5.1 (2013-08-16)

	v0.5.0 (2013-03-18)

	v0.4.1 (2013-01-02)

	v0.4.0 (2012-12-19)

	v0.3.0 (2012-07-13)

	v0.2.1 (2012-06-29)

	v0.2.0 (2012-06-24)

	v0.1.1 (2012-06-22)

	v0.1.0 (2012-06-21)

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Below are the basic steps need to get django-all-access integrated into your
Django project.

Configure Settings

You need to add allaccess to your installed apps as well as include an
additional authentication backend in your project settings. django-all-access requires
django.contrib.auth, django.contrib.sessions and django.contrib.messages
which are enabled in Django by default. django.contrib.admin is recommended
for managing the set of providers, but is not required.

INSTALLED_APPS = (
 # Required contrib apps
 'django.contrib.auth',
 'django.contrib.sessions',
 'django.contrib.messages',
 # Optional
 'django.contrib.admin',
 # Other installed apps would go here
 'allaccess',
)

AUTHENTICATION_BACKENDS = (
 # Default backend
 'django.contrib.auth.backends.ModelBackend',
 # Additional backend
 'allaccess.backends.AuthorizedServiceBackend',
)

Note that AUTHENTICATION_BACKENDS is not included in the default settings
created by startproject. If you want to continue to use the default
username/password based authentication, you should be sure to include
django.contrib.auth.backends.ModelBackend in this setting.

By default, django-all-access uses the built-in Django settings LOGIN_URL and
LOGIN_REDIRECT_URL. You should be sure that these are set to valid URLs for
your site.

Configure Urls

To use the default redirect and callback views, you should include them in
your root URL configuration.

from django.conf.urls import include

urlpatterns = [
 # Other URL patterns would go here
 url(r'^accounts/', include('allaccess.urls')),
]

This makes the login URL for a particular provider /accounts/login/<provider>/,
such as /accounts/login/twitter/ or /accounts/login/facebook/. Once the user
has authenticated with the remote provider, they will be sent back to
/accounts/callback/<provider>/, such as /accounts/callback/twitter/
or /accounts/callback/facebook/.

Create Database Tables

You’ll need to create the necessary database tables for storing OAuth providers and
user associations with those providers. This is done with the migrate management
command built into Django:

python manage.py migrate allaccess

Next Steps

At this point your project is configured to use the default django-all-access
authentication, but no providers have been added. Continue reading to learn how
to add providers for your project.

Configuring Providers

django-all-access configures and stores the set of OAuth providers in the database.
To enable your users to authenticate with a particular provider, you will need to add
the OAuth API URLs as well as your application’s consumer key and consumer secret.
The process of registering your application with each provider will vary and
you should refer to the provider’s API documentation for more information.

Note

While the consumer key/secret pairs are stored in the database
as opposed to putting them in the settings file, they are encrypted using the
AES specification [http://en.wikipedia.org/wiki/Advanced_Encryption_Standard].
Since this is a symmetric-key encryption the key/secret pairs can still be read
if the encryption key is compromised. In this case django-all-access uses a
key based on the standard SECRET_KEY setting. You should take care to keep
this setting secret as its name would imply.

Common Providers

To get you started, there is an initial fixture of commonly used providers. This includes
the URLs needed for Facebook, Twitter, Google, Microsoft Live, Github and Bitbucket. Once you’ve
added allaccess to your INSTALLED_APP and created the tables with migrate,
you can load this fixture via:

python manage.py loaddata common_providers.json

This does not include the consumer id/key or secret which will still need to be added
to the records. The below examples will help you understand what these values mean
and how they would be populated for additional providers you might want to use.

OAuth 1.0 Providers

OAuth 1.0 Protocol is defined by RFC 5849 [http://tools.ietf.org/html/rfc5849].
It is sometimes referred to as 3-Legged OAuth due to the number of requests
between the provider and consumer.

To enable an OAuth provider, you should add a Provider record with the necessary
request_token_url, authorization_url and access_token_url as defined
by the protocol. The provider’s API documentation should detail these for you. You
will also need to define a profile_url which is the API endpoint for requesting
the currently authenticated user’s profile information. You will also need to
register for a key/secret pair from the provider.

This protocol is implemented by a number of providers. These providers
include Twitter, Netflix, Yahoo, Linkedin, Flickr, Bitbucket, and Dropbox.
Additional providers can be found on the
OAuth.net Wiki [http://wiki.oauth.net/w/page/12238551/ServiceProviders].

Twitter Example

Twitter is a popular social website which provides a REST API with OAuth 1.0
authentication. If you wanted to enable Twitter authentication on your website
using django-all-access, you would create the following Provider record:

name: twitter
request_token_url: https://api.twitter.com/oauth/request_token
authorization_url: https://api.twitter.com/oauth/authenticate
access_token_url: https://api.twitter.com/oauth/access_token
profile_url: https://api.twitter.com/1.1/account/verify_credentials.json

After adding your consumer key and secret to this record you should now be able
to authenticate with Twitter by visiting /accounts/login/twitter/.
You can find more information on the Twitter API on their developer site [https://dev.twitter.com/docs].

OAuth 2.0 Providers

Unlike OAuth 1.0, OAuth 2.0 is only a working draft [http://tools.ietf.org/html/draft-ietf-oauth-v2-28]
and not an official standard. In many ways it is much simpler than its predecessor.
It is often referred to as 2-Legged OAuth because it removes the need for the
request token step.

To enable an OAuth provider, you should add a Provider record with the necessary
authorization_url and access_token_url as defined by the protocol.
The provider’s API documentation should detail these for you. You
will also need to define a profile_url which is the API endpoint for requesting
the currently authenticated user’s profile information. You will also need to
register for a key/secret pair from the provider.

Providers which implement the OAuth 2.0 protocol include Facebook, Google,
FourSquare, Meetup, Github, and Yammer.

Facebook Example

Facebook is a large social network which provides a REST API with OAuth 2.0
authentication. The below Provider record will enable Facebook authentication:

name: facebook
authorization_url: https://www.facebook.com/v2.8/dialog/oauth
access_token_url: https://graph.facebook.com/v2.8/oauth/access_token
profile_url: https://graph.facebook.com/v2.8/me

As you can see, the request_token_url is not included because it is not needed.
After adding your consumer key and secret to this record you should now be able
to authenticate with Facebook by visiting /accounts/login/facebook/.
Facebook also has developer docs [http://developers.facebook.com/docs/]
for additional information on using their API.

Note

Facebook began using the version number in the URL as part of their 2.0 API.
Since then very little has changed with regard to the OAuth flow but the
version number is now required. The latest version of the API might not
match the documentation here. For the most up to date info on the Facebook
API you should consult their API docs.

Customizing Redirects and Callbacks

django-all-access provides default views/urls for authentication. These are built
from Django’s class based views [https://docs.djangoproject.com/en/1.8/topics/class-based-views/]
making them easy to extend or override the default behavior in your project.

OAuthRedirect View

The initial step for authenticating with any OAuth provider is redirecting the
user to the provider’s website. The OAuthRedirect view extends from the
RedirectView [https://docs.djangoproject.com/en/1.8/ref/class-based-views/#redirectview]
By default it is mapped to the allaccess-login URL name. This view takes one
keyword argument from the URL pattern provider which corresponds to the Provider.name
for an enabled provider. If no enabled provider is found for the name, this view
will return a 404.

	
class OAuthRedirect

	
	
client_class

	Used to change the BaseOAuthClient used by the view. See
OAuthRedirect.get_client() for more details.

New in version 0.8.

	
params

	Used to pass additional parameters to the authorization redirect (i.e. scope requests).
See OAuthRedirect.get_additional_parameters() for more details.

	
get_client(provider)

	Here you can override the OAuth client class which is used to generate the
redirect URL. Another use case is to disable the enforcement of the OAuth 2.0
state parameter for providers which don’t support it. If you are using
the view for a single provider, it would be easiest to set the
OAuthRedirect.client_class attribute on the class instead.

You should be sure to use the same client class for the callback view as well.

	
get_redirect_url(**kwargs)

	This method is originally defined by the RedirectView. The redirect URL is
constructed from the Provider.authorization_url along with the necessary
parameters to match the OAuth specifications. You should not need to override
this method in your application.

	
get_additional_parameters(provider)

	Here you can return additional parameters for the authorization request. By
default this returns {}. A common usage for overriding this method is
to request additional permissions for the authorization. There is no
standard for additional permissions in the OAuth 1.0 specification. For
an OAuth 2.0 provider this is done with the scope parameter.

	
get_callback_url(provider)

	This returns the URL which the remote provider should return the user after
authentication. It is called by OAuthRedirect.get_redirect_url() to construct
the appropriate redirect URL. By default the reverses the allaccess-callback
URL name with the passed provider name.

You may want to override this method in your application if you wish to have
a custom callback for a given provider, a different callback for login vs
registration, or a different callback for an authenticated user associating a
new provider with their account.

OAuthCallback View

After the user has authenticated with the remote provider or denied access to your application
request, they are returned to the callback specifed in the initial redirect. OAuthCallback
defines the default behaviour on this callback. This view extends from the base
View [https://docs.djangoproject.com/en/1.8/ref/class-based-views/#view] class.
By default it is mapped to the allaccess-callback URL name. Similar to the OAuthRedirect view,
this view takes one keyword argument provider which corresponds to the Provider.name
for an enabled provider. If no enabled provider is found for the name, this view will return a 404.

	
class OAuthCallback

	
	
client_class

	Used to change the BaseOAuthClient used by the view. See
OAuthCallback.get_client() for more details.

New in version 0.8.

	
provider_id

	Used to customize how the user identifier is found from the user profile response from
the provider. If the provider response includes a nested response then this value
can include a dotted path to the id value.

For example if the response is {‘result’: {‘user’: {‘id’: ‘XXX’}}} then you can
set this attribute to result.user.id to access the value.
See OAuthCallback.get_user_id() for more details.

	
get_callback_url(provider)

	This returns the callback URL specified in the initial redirect if it is
different than the current request.path. By default the callback URL will be the same
and this view will return None. You will most likely not need to change this
in your project.

	
get_client(provider)

	Here you can override the OAuth client class which is used to fetch the access
token and user information. Another use case is to disable the enforcement of
the OAuth 2.0 state parameter for providers which don’t support it. If you
are using the view for a single provider, it would be easiest to set the
OAuthCallback.client_class attribute on the class instead.

You should be sure to use the same client class for the redirect view as well.

	
get_error_redirect(provider, reason)

	Returns the URL to send the user in the case of an authentication failure. The
reason is a brief text description of the problem. By default this will return
the user to the original login URL as defined by the LOGIN_URL setting.

	
get_login_redirect(provider, user, access, new=False)

	You can use this to customize the URL to send the user on a successful authentication.
By default this will be the LOGIN_REDIRECT_URL setting. The new parameter
is there to indicate if this was a newly created or a previously existing user.

	
get_or_create_user(provider, access, info)

	This method is used by OAuthCallback.handle_new_user() to construct a new user with a
random username, no email and an unusable password. You may want to override
this user to complete more of their infomation or attempt to match them
to an existing user by either their username or email.

OAuthCallback.handle_new_user() will connect the user to the access record and
does not need to be handled here.

	Note:	If you are using Django 1.5 support for a custom User model, you
should override this method to ensure the user is created correctly.

	
get_user_id(provider, info)

	This method should return the unique identifier from the profile information. If
the id cannot be determined, this should return None. The info parameter
will be the parsed JSON response from the user’s profile. If the response wasn’t
JSON, it will be the plain text response. By default this looks for a key
id in the JSON dictionary. This will work for a number of providers, but
will need to be changed to fit more complex response structures.

You can customize how this lookup is done by setting the OAuthCallback.provider_id.
This can be done either in the class definition or when calling .as_view.

	
handle_existing_user(provider, user, access, info)

	At this point the user has been authenticated via their access model
with this provider, but they have not been logged in. This method will login
the user and redirect them to the URL returned by
OAuthCallback.get_login_redirect() with new=False.

The user’s profile info is passed to this method to allow for updating their
data from their provider profile, but this is not done by default.

	
handle_login_failure(provider, reason)

	In the case of a failure to fetch the user’s access token or remote profile information
or determine their id from that info, this method will be called. It attachs a
brief error message to the request via contrib.messages and redirects the
user to the result of the OAuthCallback.get_error_redirect() method. You should override
this function to add any additional logging or handling.

	
handle_new_user(provider, access, info)

	If the user could not be matched to an existing AccountAccess record for
this provider or that record did not contain a user, this method will be called.
At this point the access record has already been saved but is not tied to
a user. This will call OAuthCallback.get_or_create_user() to construct a new user record.
The user is then logged in and redirected to the result of the
OAuthCallback.get_login_redirect() call with new=True

You may want to override this user to complete more of their infomation or
attempt to match them to an existing user by either their username or email.
You may want to override this to redirect them without creating a new user
in order to have them complete another registration form
(i.e. pick a username or provide an email if not returned by the provider).

Customization in URLs

For some minor customizations to the redirects and callbacks, it’s possible to
handle that in the URL inclusion rather than by creating a subclass of the view.
The most common customizations are adding additional scope on the redirect
and changing how the provider identifier is found on the callback. Below is an example
urls.py which handles both of these cases.

from django.conf.urls import include, url

from allaccess.views import OAuthRedirect, OAuthCallback

urlpatterns = [
 # Customize Facebook redirect to request additional scope
 url(r'^accounts/login/(?P<provider>facebook)/$',
 OAuthRedirect.as_view(params={'scope': 'email'})),
 # Customize Foursqaure callback to handle nested response
 url(r'^accounts/callback/(?P<provider>foursquare)/$',
 OAuthCallback.as_view(provider_id='response.user.id')),
 # All other provider cases are handled by the defaults
 url(r'^accounts/', include('allaccess.urls')),
]

Additional Scope Example

As noted above, the default OAuthRedirect redirect does not request any additional
permissions from the provider. It is recommended by most providers that you limit
the number of additional permissions that you request. The user will see the list
of permissions you are requesting and if they see a long list of permissions they
may decline the authorization. The below example shows how you can request
additional parameters for various providers.

from allaccess.views import OAuthRedirect

class AdditionalPermissionsRedirect(OAuthRedirect):

 def get_additional_parameters(self, provider):
 if provider.name == 'facebook':
 # Request permission to see user's email
 return {'scope': 'email'}
 if provider.name == 'google':
 # Request permission to see user's profile and email
 perms = ['userinfo.email', 'userinfo.profile']
 scope = ' '.join(['https://www.googleapis.com/auth/' + p for p in perms])
 return {'scope': scope}
 return super(AdditionalPermissionsRedirect, self).get_additional_parameters(provider)

This would be used instead of the default OAuthRedirect for the allaccess-login URL.
Remember that this logic can be based on the provider or even the current request. That
would allow your project to A/B test requesting more or less permissions to see its
impact on user registrations.

Additional Accounts Example

You may want to allow a user to associate their account on your website with multiple
providers. This example will show a basic outline of how you can customize these
views for that purpose.

First we will define a new callback which will associate the provider with the current
user rather than creating a new user. This view will also have to handle the case that
another user is associated with the new provider. For this the view will just return
an error.

from allaccess.views import OAuthCallback

class AssociateCallback(OAuthCallback):

 def get_or_create_user(self, provider, access, info):
 return self.request.user

 def handle_existing_user(self, provider, user, access, info):
 if user != self.request.user:
 return self.handle_login_failure(provider, "Another user is associated with this account")
 # User was already associated with this account
 return super(AssociateCallback, self).handle_existing_user(provider, user, access, info)

This view will require authentication which is handled in the URL pattern. There
are multiple methods for decorating class based views which are detailed in the
Django docs [https://docs.djangoproject.com/en/1.8/topics/class-based-views/#decorating-class-based-views].

Next we will need a redirect view to send the user to this callback. This view
will also require that the user already be authenticated which can be handled in
the URL pattern.

from django.core.urlresolvers import reverse
from allaccess.views import OAuthRedirect

class AssociateRedirect(OAuthRedirect):

 def get_callback_url(self, provider):
 return reverse('associate-callback', kwargs={'provider': provider.name})

This assumes that we named the pattern for the above callback associate-callback. An
example set of URL patterns is given below.

from django.contrib.auth.decorators import login_required

from .views import AssociateRedirect, AssociateCallback

urlpatterns = [
 url(r'^associate/(?P<provider>(\w|-)+)/$', login_required(AssociateRedirect.as_view()), name='associate'),
 url(r'^associate-callback/(?P<provider>(\w|-)+)/$', login_required(AssociateCallback.as_view()), name='associate-callback'),
]

That is the basic outline of how you would allow multiple account associations. This
could be further customized using the hooks described earlier.

Additional API Calls

django-all-access requests the user’s access token and fetches their profile information
during the authentication process. If you want to make additional API calls on behalf
of the user, it is easy to do and you have the full power of the
python-requests [http://docs.python-requests.org/] library.

Getting the API

You can access the API client through the AccountAccess.api_client property.
This will return either a OAuthClient or OAuth2Client based on the
provider. API requests can be made using either the BaseOAuthClient.request() method. This takes
the HTTP method as the first parameter and the URL as the second. An example for the
Twitter API is given below:

from allaccess.views import OAuthCallback

class NewTweetCallback(OAuthCallback):

 def get_login_redirect(self, provider, user, access, new=False):
 "Send a tweet for new Twitter users."
 if new and provider.name == 'twitter':
 api = access.api_client
 url = 'https://api.twitter.com/1/statuses/update.json'
 data = {'status': 'I just joined an awesome new site!'}
 response = api.request('post', url, data=data)
 # Check for errors in the response?
 return super(NewTweetCallback, self).get_login_redirect(provider, user, access, new)

This assumes that you have requested sufficient permissions to tweet on behalf of the
user. While this example is done in the callback, you can access the API client at
any time by querying the AccountAccess table. There is a catch in that the
access token from the provider might have been revoked by the user or expired.
You should refer to the provider’s API documentation for information regarding
available endpoints and the access token expiration.

The BaseOAuthClient.request() method is a thin wrapper around the underlying
python-requests library which sets up the appropriate authenication for OAuth 1.0 or OAuth 2.0. For
more information on additional hooks available, you should refer to the python-requests
documentation [http://docs.python-requests.org/en/latest/api/#requests.request].

API Client

The OAuthClient or OAuth2Client classes define methods centered around OAuth
specifications and the authentication and registration workflow. The common methods
are defined in a BaseOAuthClient. If you are going to extend the client for
a particular provider, it is recommended that you extend the appropriate OAuth 1.0 or
2.0 client rather than the BaseOAuthClient.

	
class BaseOAuthClient

	
	
__init__(provider, token='')

	The client classes are created with an associated provider model record.
The provider is used to provide the necessary URL (request token, access
token, profile URL) information to the client.

	
get_access_token(request, callback=None)

	Used to fetch the access token from the callback URL. Unless you are
familiar with the OAuth specifications, it is not recommended that you
override this method.

	
get_profile_info(raw_token)

	Fetches and parses the profile information from the provider’s profile
URL. This assumes that the response is JSON. If not, you may need to
override this method.

	
get_redirect_args(request, callback)

	Builds the necessary query string parameters for the initial redirect
based on the OAuth specification. Additional parameters are better added
using OAuthRedirect.get_additional_parameters(). Unless you are
familiar with the OAuth specifications, it is not recommended that you
override this method.

	
get_redirect_url(request, callback)

	Builds the appropriate OAuth callback URL based on the provider information
and the result of BaseOAuthClient.get_redirect_args(). Unless you are familiar with the
OAuth specifications, it is not recommended that you override this method.

	
parse_raw_token(raw_token)

	Parses the token (key, secret) information from the raw token response.

	
request(method, url, **kwargs)

	A thin wrapper around python-requests, this also sets up the appropriate
authentication headers/parameters.

	
session_key

	Returns a key for storing information in the user’s session. For OAuth 1.0
this would be used to store the request token information. For OAuth 2.0
this is used for enforcing the state parameter.

Beyond the methods above, the OAuthClient also defines the below methods.

	
class OAuthClient

	
	
get_request_token(request, callback)

	Retrieves the request token prior to the initial redirect to the provider. This
is stored in the session using the BaseOAuthClient.session_key which is unique per provider.
Unless you are familiar with the OAuth 1.0 specification, it is not recommended that you
override this method.

OAuth2Client extends BaseOAuthClient to include these additional methods.

	
class OAuth2Client

	
	
check_application_state(request, callback)

	On the callback this method is called to enforce the use of the state parameter.
The use of state is optional in the OAuth 2.0 spec but it is recommended
and enforced by default by django-all-access. If you do not want to enforce
the use of state, you should override OAuth2Client.get_application_state() and
leave this method alone.

	
get_application_state(request, callback)

	Prior to the redirect, this method is used to generate a random state parameter
which is stored in the session based on the BaseOAuthClient.session_key. By default it
generates a secure random 32 character string. If you wish to make it longer
you can override this method. If you do not want to enforce the state
parameter or the provider you are using does not allow it, you can override
this to return None.

Contributing Guide

There are a number of ways to contribute to django-all-access. If you are interested
in making django-all-access better then this guide will help you find a way to contribute.

Ways to Contribute

Not all contributions are source code related. You can contribute to the project by
writing a blog post on using django-all-access and sharing with the
mailing list [http://groups.google.com/group/django-all-access]. You can also
submit bug reports, feature requests or documentation updates through the Github
issues [https://github.com/mlavin/django-all-access/issues].

Getting the Source

You can clone the repository from Github:

git clone git://github.com/mlavin/django-all-access.git

However this checkout will be read only. If you want to contribute code you should
create a fork and clone your fork. You can then add the main repository as a remote:

git clone git@github.com:<your-username>/django-all-access.git
git remote add upstream git://github.com/mlavin/django-all-access.git
git fetch upstream

Running the Tests

When making changes to the code, either fixing bugs or adding features, you’ll want to
run the tests to ensure that you have not broken any of the existing functionality.
With the code checked out and Django installed you can run the tests via:

python setup.py test

or:

python runtests.py

Note that the tests require the mock [http://www.voidspace.org.uk/python/mock/] library.
To test against multiple versions of Django you can use install and use tox>=1.4. The
tox command will run the tests against the currently supported Python and Django versions.

Build all environments
tox
Build a single environment
tox -e py27-django18-normal

Building all environments will also build the documentation. More on that in the next
section.

Building the Documentation

This project aims to have a minimal core with hooks for customization. That makes documentation
an important part of the project. Useful examples and notes on common use cases are a great
way to contribute and improve the documentation.

The docs are written in ReST [http://docutils.sourceforge.net/rst.html]
and built using Sphinx [http://sphinx.pocoo.org/]. As noted above, you can use
tox to build the documentation or you can build them on their own via:

tox -e docs

or:

make html

from inside the docs/ directory.

Coding Standards

Code contributions should follow the PEP8 [http://www.python.org/dev/peps/pep-0008/]
and Django contributing style [https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/]
standards. Please note that these are only guidelines. Overall code consistency
and readability are more important than strict adherence to these guides.

Submitting a Pull Request

The easiest way to contribute code or documentation changes is through a pull request.
For information on submitting a pull request you can read the Github help page
https://help.github.com/articles/using-pull-requests.

Pull requests are a place for the code to be reviewed before it is merged. This review
will go over the coding style as well as if it solves the problem intended and fits
in the scope of the project. It may be a long discussion or it might just be a simple
thank you.

Not necessarily every request will be merged but you should not take it personally
if your change is not accepted. If you want to increase the chances of your change
being incorporated, here are some tips.

	Address a known issue. Preference is given to a request that fixes a currently open issue.

	Include documentation and tests when appropriate. New features should be tested and documented. Bugfixes should include tests which demonstrate the problem.

	Keep it simple. It’s difficult to review a large block of code, so try to keep the scope of the change small.

If you aren’t sure if a particular change is a good idea, or if it would be helpful to
other users, just ask [http://groups.google.com/group/django-all-access]. You should
also feel free to ask for help writing tests or writing documentation if you aren’t sure
how to go about it.

Release History

Release and change history for django-all-access

v0.9.0 (2016-11-12)

Encrypted fields for storing the provider configurations and access tokens
now sign the values after encryption to dectect if the key is valid before
attempting to decrypt. This was added thanks to Florian Demmer (@fdemmer).

Other small changes include:

	Added Django 1.10 and Python 3.5 to the test suite coverage.

	Updated documentation on Facebook version numbers.

	Update provider fixtures to include the latest version number for Facebook.

v0.8.0 (2016-01-23)

Minor clean up release which drops support for outdated versions of Django. As
such it also removes the old South migrations and the commands related to
django-social-auth.

	Added support for additional parameters in the redirect view.

	Added support for more complex id lookups in the callback view.

	Additional documentation examples for customizing the views.

	Added support for Django 1.9.

	Tracking code coverage reports with Codecov.io.

Backwards Incompatible Changes

	Python 3.2 is no longer officially supported or tested.

	Django < 1.8 is no longer officially supported or tested.

	requests_oauthlib < 0.4.2 is no longer officially supported.

	migrate_social_accounts and migrate_social_accounts commands have been removed.

v0.7.2 (2015-05-13)

	Model updates for Django 1.8 compatibility. Requires a non-DB altering migration.

v0.7.1 (2015-04-19)

	Fixed issue in migrate_social_accounts where output was overly verbose.

	Fixed issue in migrate_social_accounts with handling skipped providers.

v0.7.0 (2014-09-07)

This release adds support for 1.7 and the new style migrations. If you are using Django < 1.7
and South >= 1.0 this should continue to work without issue.

For those using Django < 1.7 and South < 1.0 you’ll need
to add the SOUTH_MIGRATION_MODULES setting to point to the old South migrations.

SOUTH_MIGRATION_MODULES = {
 'allaccess': 'allaccess.south_migrations',
}

No new migrations were added for this release, but this will be the new location for future migrations. If your
DB tables are up to date from v0.6, upgrading to 1.7 and running:

python manage.py migrate allaccess

should automatically fake the initial migration using the new-style migrations.

Backwards Incompatible Changes

	Python 2.6 is no longer officially supported or tested.

v0.6.0 (2014-02-01)

This release adds a better migration path for moving from django-social-auth and includes changes to support
running on the Google App Engine. There are two South migrations included with this release. To upgrade, you should run:

python manage.py migrate allaccess

More details for this change are noted under the “Backwards Incompatible Changes”.

	Added migrate_social_accounts and migrate_social_providers management commands to help migrate data from django-social-auth.

	Updated Provider model for compatibility with running on the Google App Engine. Thanks to Marco Seguri for the report and fix.

	Increased the URL lengths for the fields on the Provider model. Thanks to Marco Seguri for the fix.

	Added support for serialization of Provider and AccountAccess records by natural keys.

	Included a fixture of common providers (Facebook, Twitter, Google, Microsoft Live, Github and Bitbucket). Thanks to Marco Seguri for the initial patch.

Backwards Incompatible Changes

	The key and secret columns on Provider were renamed to consumer_key and consumer_secret. key is a reserved property

name when using Google App Engine and secret was changed as well for consistency. A migration has been added for the change but
if you were referencing the key/secret explicitly in your code those references need to be updated as well.
- ProviderManager.enabled has been removed. This was a short-cut method for filtering out providers with key or secret values. However,
it doesn’t work on Google App Engine. It was only used in a few places internally so it was removed. The equivalent query is
Provider.objects.filter(consumer_secret__isnull=False, consumer_key__isnull=False)

v0.5.1 (2013-08-16)

	Fix incompatibility with the existing South migrations and a customized User model. Thanks to Jharrod LaFon for the report and fix.

v0.5.0 (2013-03-18)

This release adds additional hooks for changing the OAuth client behaviors. It also
adds support for Python 3.2+.

	New view hooks for customizing the OAuth client

	Fixed issue with including oauth_verifier in POST when fetching the access token

	Documented the API for OAuthClient and OAuth2Client

	Updated requirements to requests >= 1.0 and requests_oauthlib >= 0.3.0

	Updated requirement for PyCrypto >= 2.4

Backwards Incompatible Changes

	Dropped support for requests < 1.0

	Dropped support for Django < 1.4.2

v0.4.1 (2013-01-02)

There were incompatibilty issues with requests-oauthlib (0.2) and requests which
required dropping requests 1.0 support. The requirement of oauthlib was also raised
to 0.3.4 due to similar issues. For more detail see the below issues.

	https://github.com/requests/requests-oauthlib/issues/1

	https://github.com/requests/requests-oauthlib/pull/10

v0.4.0 (2012-12-19)

This release is largely to keep pace with features/changes to some of the
dependencies. This also helps work toward Python 3.0 support.

	Updated for compatibility with Django 1.4 timezone support

	Updated for compatibility with Django 1.5 swappable auth.User

	
	Updated for compatibility with Requests 1.0

	
	Added requests_oauthlib requirement

	Updated requirement of oauthlib to 0.3 or higher

v0.3.0 (2012-07-13)

This release added some basic logging to django-all-access. To enable this logging
in your project, you should update your LOGGING configuration to include
allaccess in the loggers section. Below is an example:

LOGGING = {
 'handlers': {
 'console':{
 'level':'DEBUG',
 'class':'logging.StreamHandler',
 },
 'mail_admins': {
 'level': 'ERROR',
 'class': 'django.utils.log.AdminEmailHandler',
 'filters': ['special']
 }
 },
 'loggers': {
 'django.request': {
 'handlers': ['mail_admins',],
 'level': 'ERROR',
 'propagate': True,
 },
 'allaccess': {
 'handlers': ['console',],
 'level': 'INFO',
 }
 }
}

For more information on logging please see the
Django documentation [https://docs.djangoproject.com/en/1.4/topics/logging/]
or the Python documentation [http://docs.python.org/library/logging.html].

Features

	Added access to simple API wrapper through the AccountAccess model

	Added state parameter for OAuth 2.0 by default

	Added basic error logging to OAuth clients and views

	Added contributing guide and mailing list info

v0.2.1 (2012-06-29)

Bug Fixes

	Fixes missing Content-Length header when requesting OAuth 2.0 access token

v0.2.0 (2012-06-24)

There are two South migrations included with this release. To upgrade you should run:

python manage.py migrate allaccess

If you are not using South, you will not need to change your database schema because
the underlying field type did not change. However, you should re-save all existing
AccountAccess instances to ensure that their access tokens go through the encryption step

from allaccess.models import AccountAccess

for access in AccountAccess.objects.all():
 access.save()

Features

	OAuthRedirect view can now specify a callback URL

	OAuthRedirect view can now specify additional permissions

	Context processor for adding enabled providers to the template context

	User access tokens are stored with AES encryption

	Documentation on customizing the view workflow behaviors

	Travis CI integration

Bug Fixes

	Fixed OAuth2Client to include grant_type paramater when requesting access token

	Fixed OAuth2Client to match current OAuth draft for access token response as well as legacy response from Facebook

Backwards Incompatible Changes

	Moving the construction on the callback from the client to the view changed the signature of the client get_redirect_url, get_redirect_args, get_request_token (OAuth 1.0 only) and get_access_token to include the callback. These are largely internal functions and likely will not impact existing applications.

	The AccountAccess.access_token field was changed from a plain text field to an encrypted field. See previous note on migrating this data.

v0.1.1 (2012-06-22)

	Fixed bug with passing incorrect callback parameter for OAuth 1.0

	Additional documentation on configuring LOGIN_URL and LOGIN_REDIRECT_URL

	Additional view tests

	Handled poor LOGIN_URL and LOGIN_REDIRECT_URL settings in view tests

v0.1.0 (2012-06-21)

	Initial public release.

Index

 _
 | B
 | C
 | G
 | H
 | O
 | P
 | R
 | S

_

 	
 	__init__() (BaseOAuthClient method)

B

 	
 	BaseOAuthClient (built-in class)

C

 	
 	check_application_state() (OAuth2Client method)

 	
 	client_class (OAuthCallback attribute)

 	(OAuthRedirect attribute)

G

 	
 	get_access_token() (BaseOAuthClient method)

 	get_additional_parameters() (OAuthRedirect method)

 	get_application_state() (OAuth2Client method)

 	get_callback_url() (OAuthCallback method)

 	(OAuthRedirect method)

 	get_client() (OAuthCallback method)

 	(OAuthRedirect method)

 	get_error_redirect() (OAuthCallback method)

 	
 	get_login_redirect() (OAuthCallback method)

 	get_or_create_user() (OAuthCallback method)

 	get_profile_info() (BaseOAuthClient method)

 	get_redirect_args() (BaseOAuthClient method)

 	get_redirect_url() (BaseOAuthClient method)

 	(OAuthRedirect method)

 	get_request_token() (OAuthClient method)

 	get_user_id() (OAuthCallback method)

H

 	
 	handle_existing_user() (OAuthCallback method)

 	
 	handle_login_failure() (OAuthCallback method)

 	handle_new_user() (OAuthCallback method)

O

 	
 	OAuth2Client (built-in class)

 	OAuthCallback (built-in class)

 	
 	OAuthClient (built-in class)

 	OAuthRedirect (built-in class)

P

 	
 	params (OAuthRedirect attribute)

 	
 	parse_raw_token() (BaseOAuthClient method)

 	provider_id (OAuthCallback attribute)

R

 	
 	request() (BaseOAuthClient method)

S

 	
 	session_key (BaseOAuthClient attribute)

 _static/comment.png

nav.xhtml

 Table of Contents

 		django-all-access

 		Getting Started

 		Configure Settings

 		Configure Urls

 		Create Database Tables

 		Next Steps

 		Configuring Providers

 		Common Providers

 		OAuth 1.0 Providers

 		Twitter Example

 		OAuth 2.0 Providers

 		Facebook Example

 		Customizing Redirects and Callbacks

 		OAuthRedirect View

 		OAuthCallback View

 		Customization in URLs

 		Additional Scope Example

 		Additional Accounts Example

 		Additional API Calls

 		Getting the API

 		API Client

 		Contributing Guide

 		Ways to Contribute

 		Getting the Source

 		Running the Tests

 		Building the Documentation

 		Coding Standards

 		Submitting a Pull Request

 		Release History

 		v0.9.0 (2016-11-12)

 		v0.8.0 (2016-01-23)

 		Backwards Incompatible Changes

 		v0.7.2 (2015-05-13)

 		v0.7.1 (2015-04-19)

 		v0.7.0 (2014-09-07)

 		Backwards Incompatible Changes

 		v0.6.0 (2014-02-01)

 		Backwards Incompatible Changes

 		v0.5.1 (2013-08-16)

 		v0.5.0 (2013-03-18)

 		Backwards Incompatible Changes

 		v0.4.1 (2013-01-02)

 		v0.4.0 (2012-12-19)

 		v0.3.0 (2012-07-13)

 		Features

 		v0.2.1 (2012-06-29)

 		Bug Fixes

 		v0.2.0 (2012-06-24)

 		Features

 		Bug Fixes

 		Backwards Incompatible Changes

 		v0.1.1 (2012-06-22)

 		v0.1.0 (2012-06-21)

_static/down-pressed.png

_static/up.png

_static/down.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/comment-close.png

